A Maximum Likelihood Approach to Nonlinear Convolutive Blind Source Separation
نویسندگان
چکیده
A novel learning algorithm for blind source separation of postnonlinear convolutive mixtures with non-stationary sources is proposed in this paper. The proposed mixture model characterizes both convolutive mixture and post-nonlinear distortions of the sources. A novel iterative technique based on Maximum Likelihood (ML) approach is developed where the ExpectationMaximization (EM) algorithm is generalized to estimate the parameters in the proposed model. The post-nonlinear distortion is estimated by using a set of polynomials. The sufficient statistics associated with the source signals are estimated in the E-step while in the M-step, the parameters are optimized by using these statistics. In general, the nonlinear maximization in the M-step is difficult to be formulated in a closed form. However, the use of polynomial as the nonlinearity estimator facilitates the M-step tractable and can be solved via linear equations.
منابع مشابه
On-line Convolutive Blind Source Separation of Non-Stationary Signals
A novel algorithm is proposed in this paper to solve blind source separation of post-nonlinear convolutive mixtures of non-stationary sources. Both convolutive mixing and post-nonlinear distortion are included in the proposed model. Based on the generalized Expectation-Maximization (EM) algorithm, the Maximum Likelihood (ML) approach is developed to estimate the parameters in the model. A set o...
متن کاملPenalty Function Approach for Constrained Convolutive Blind Source Separation
A new approach for convolutive blind source separation (BSS) using penalty functions is proposed in this paper. Motivated by nonlinear programming techniques for the constrained optimization problem, it converts the convolutive BSS into a joint diagonalization problem with unconstrained optimization. Theoretical analyses together with numerical evaluations reveal that the proposed method not on...
متن کاملA Maximum Likelihood Approach to Nonlinear Blind Source Separation
In the basic signal model of blind source separation (BSS), an unknown linear mixing process is assumed. While this ensures under mild conditions a suuciently unique solution, it is desirable to extend the problem to nonlinear mixtures. Unfortunately the nonlinear case is much more diicult to handle, and brings serious indeterminacies to the solutions in the general case. In this paper we propo...
متن کاملBlind speech source localization, counting and separation for 2-channel convolutive mixtures in a reverberant environment
In this paper, the tasks of speech source localization, source counting and source separation are addressed for an unknown number of sources in a stereo recording scenario. In the first stage, the angles of arrival of individual source signals are estimated through a peak finding scheme applied to the angular spectrum which has been derived using non-linear GCC-PHAT. Then, based on the known ch...
متن کاملBlind Separating Convolutive Post Non-linear Mixtures
This paper addresses blind source separation in convolutive post nonlinear (CPNL) mixtures. In these mixtures, the sources are mixed convolutively, and then measured by nonlinear (e.g. saturated) sensors. The algorithm is based on minimizing the mutual information by using multivariate score functions.
متن کامل